

ОЦЕНКА БАЛАНСОВОЙ НАДЕЖНОСТИ НАЦИОНАЛЬНЫХ ЭНЕРГОСИСТЕМ МИРОВОЙ ОПЫТ

ик ээс снг

ЗАДАЧА ОБЕСПЕЧЕНИЯ НАДЕЖНОСТИ ЭНЕРГОСИСТЕМ

РОСТ ЗАВИСИМОСТИ ОБЩЕСТВА ОТ СТАБИЛЬНОГО ЭЛЕКТРОСНАБЖЕНИЯ

НЕОБХОДИМОСТЬ ОБЕСПЕЧИТЬ УСТАНОВЛЕННЫЙ ГОСУДАРСТВОМ УРОВЕНЬ НАДЕЖНОСТИ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

ПРИ УПРАВЛЕНИИ ФУНКЦИОНИРОВАНИЕМ

- Формирование и поддержание актуальной математической модели энергосистемы
- •Прогноз электропотребления на краткосрочный период
- •Выбор состава включенного оборудование электрических станций
- •Планирование диспетчерских графиков нагрузки электрических станций
- •Планирование ремонтов энергетического и электросетевого оборудования
- Задание настроек устройств релейной защиты и противоаварийной автоматики
- Предотвращение и ликвидация последствий аварийных ситуаций

ПРИ ПЛАНИРОВАНИИ РАЗВИТИЯ

- Формирование перспективной математической модели энергосистемы
- Прогноз электропотребления на долгосрочный период
- Разработка прогнозного баланса электроэнергии и мощности
- Определение потребности в строительстве генерирующих и электросетевых объектов
- Оценка потребности в инвестициях

НОРМИРОВАНИЕ НАДЕЖНОСТИ ЭНЕРГОСИСТЕМ

ДВА ПОДХОДА К УСТАНОВЛЕНИЮ ТРЕБУЕМОЙ НАДЕЖНОСТИ ЭНЕРГОСИСТЕМ:

■ ДЕТЕРМИНИСТИЧЕСКИЙ (N-1)

- Анализ заданных сценариев возмущений в энергосистеме, включая отключение линий электропередачи и энергоблоков.
- Система должна быть устойчивой способна сохранить синхронизм между электростанциями после возмущений определенного типа, установленных нормативно.

ВЕРОЯТНОСТНЫЙ (БАЛАНСОВАЯ НАДЕЖНОСТЬ)

- Статистический анализ и оценка вероятности различных сценариев аварийных ситуаций и изменений режимнобалансовых характеристик.
- Система должна обеспечивать электроснабжение потребителей на заданном временном интервале (обычно год) с вероятностью, установленной нормативно.

ДЕТЕРМИНИСТИЧЕСКИЙ ПОДХОД (N-1)

ДЕТЕРМИНИСТИЧЕСКИЙ ПОДХОД ЛЕЖИТ В ОСНОВЕ УПРАВЛЕНИЯ ФУНКЦИОНИРОВАНИЕМ ЭНЕРГОСИСТЕМЫ

- ■ НАЗНАЧЕНИЕ: ОБЕСПЕЧЕНИЕ УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМЫ
- **■ ИНСТРУМЕНТ: ВЕРИФИЦИРОВАННАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ**
- ■■ ИСПОЛНИТЕЛЬ: СУБЪЕКТ ОПЕРАТИВНО-ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ
- **РЕЗУЛЬТАТ ПРИМЕНЕНИЯ**

В каждый момент функционирования схема и режим работы энергосистемы обеспечивают сохранение устойчивости при нормативных возмущениях.

■ ОГРАНИЧЕНИЯ

Не рассматривает вероятность возникновения возмущений. Не рассматривает маловероятные и редкие события.

ВЕРОЯТНОСТНЫЙ ПОДХОД (БАЛАНСОВАЯ НАДЕЖНОСТЬ)

ВЕРОЯТНОСТНЫЙ ПОДХОД ИСПОЛЬЗУЕТСЯ ДЛЯ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ПЕРСПЕКТИВНОГО РЕЗЕРВА МОЩНОСТИ, ВКЛЮЧАЯ ОБОСНОВАНИЕ РЕШЕНИЙ ПО РАЗВИТИЮ ЭНЕРГОСИСТЕМ

- НАЗНАЧЕНИЕ: ОБЕСПЕЧЕНИЕ ПЕРПЕКТИВНОГО РЕЗЕРВА МОЩНОСТИ ЭНЕРГОСИСТЕМЫ
- **ИНСТРУМЕНТ: СПЕЦИАЛЬНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ**
- ИСПОЛНИТЕЛЬ: СУБЪЕКТ, ВЫПОЛНЯЮЩИЙ ФУНКЦИИ РАЗРАБОТКИ ПРОГРАММЫ РАЗВИТИЯ ЭНЕРГОСИСТЕМЫ
- РЕЗУЛЬТАТ ПРИМЕНЕНИЯ

Реализованные решения по развитию энергосистем обеспечивают достаточный объем генерации для электроснабжения потребителей с заданной вероятностью.

ОГРАНИЧЕНИЯ

Требует специфические исходные данные и математическую модель.

ПОКАЗАТЕЛИ БАЛАНСОВОЙ НАДЕЖНОСТИ

НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЮТСЯ ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ ВЕРОЯТНОСТЬ УДОВЛЕТВОРЕНИЯ СПРОСА НА ЭЛЕКТРОЭНЕРГИЮ:

LOLE (англ. «Loss of Load Expectation»)

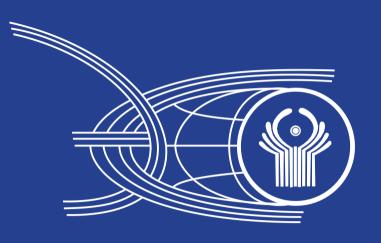
Измеряет ожидаемое количество дней в году, когда спрос на электроэнергию превысит доступное предложение. (Расчет на час максимума)

Пример использования: США, Канада — 1 день в 10 лет, Малайзия — 1 день в год

LOLH (англ. «Loss of Load Hours»)

Измеряет общее количество часов в течение года, в течение которых предполагается, что спрос на электроэнергию превысит доступную генерирующую мощность. (Расчет на каждый час) Пример использования: Франция, Сингапур — 3 часа в год, Ирландия 8 часов в год, Оман — 24 часа в год

■ ■ ВЕРОЯТНОСТЬ БЕЗДЕФИЦИТНОЙ РАБОТЫ


Измеряет вероятность того, что в каждый час в течение года доступная генерирующая мощность будет достаточной для удовлетворения спроса на электроэнергию. (Расчет на каждый час) Пример использования: Россия — 0, 996, Индия — 0,98*

НАДЕЖНОСТЬ И ИНВЕСТИЦИИ

ПРОЕКТ РЕШЕНИЯ

- 1. Принять к сведению Доклад «Оценка балансовой надежности национальных энергосистем. Мировой опыт», представленный Заместителем Председателя Исполнительного комитета ЭЭС СНГ А.В Ильенко.
- 2. Исполнительному комитету ЭЭС СНГ разместить Доклад на Интернетпортале Электроэнергетического Совета СНГ.

СПАСИБО ЗА ВНИМАНИЕ!